Neuronowy model prognozowania smogu
(str. 28 nr. 1/53/22)
|
dr. Joanna Kajewska Szkudlarek mgr inż. Kamila Makar
|
Streszczenie W dzisiejszych czasach zanieczyszczenie powietrza jest jednym z głównych, globalnych zagrożeń dla człowieka i środowiska. Prognozowanie zanieczyszczeń powietrza możliwe jest dzięki modelom sztucznej inteligencji, w tym sztucznym sieciom neuronowym. W artykule przedstawiono model prognozowania smogu z wykorzystaniem sztucznych sieci neuronowych stworzony na podstawie wielkości stężenia pyłów PM10 w Nowej Rudzie w okresie 2019-2020 oraz danych meteorologicznych. Do prognozowania wykorzystano sieć neuronową typu perceptron wielowarstwowy. Aby poprawić jakość modelu wykorzystano analizę skupień, dzięki której otrzymano dokładniejszą prognozę. Przeprowadzone badania wskazują, że wykorzystanie analizy skupień do grupowania wielkości PM10 w zależności od aktualnej temperatury minimalnej znacząco wpływa na jakość prognozy. Wynika to z korelacji niskiej temperatury powietrza, która wymusza ogrzewanie mieszkań, ze wzrostem wielkości niskiej emisji. Zastosowanie zaproponowanej metodyki prognozowania umożliwiło otrzymanie neuronowego modelu predykcji PM10, w którym zależność danych rzeczywistych i prognozowanych wynosiła r=0.99, a średniokwadratowy błąd MSE od 0.021 do 0.159. Tak dokładne prognozowanie zanieczyszczenia powietrza może się przyczynić do poprawy jakości życia i ochrony społeczeństwa przed smogiem.
|